Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
2.
Chin J Dent Res ; 27(1): 53-63, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546520

RESUMO

OBJECTIVE: To investigate FAM20A gene variants and histological features of amelogenesis imperfecta and to further explore the functional impact of these variants. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to identify pathogenic gene variants in three Chinese families with amelogenesis imperfecta. Bioinformatics analysis, in vitro histological examinations and experiments were conducted to study the functional impact of gene variants, and the histological features of enamel, keratinised oral mucosa and dental follicle. RESULTS: The authors identified two nonsense variants c. 406C > T (p.Arg136*) and c.826C > T (p.Arg176*) in a compound heterozygous state in family 1, two novel frameshift variants c.936dupC (p.Val313Argfs*67) and c.1483dupC (p.Leu495Profs*44) in a compound heterozygous state in family 2, and a novel homozygous frameshift variant c.530_531insGGTC (p.Ser178Valfs*21) in family 3. The enamel structure was abnormal, and psammomatoid calcifications were identified in both the gingival mucosa and dental follicle. The bioinformatics and subcellular localisation analyses indicated these variants to be pathogenic. The secondary and tertiary structure analysis speculated that these five variants would cause structural damage to FAM20A protein. CONCLUSION: The present results broaden the variant spectrum and clinical and histological findings of diseases associated with FAM20A, and provide useful information for future genetic counselling and functional investigation.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Calcificação Fisiológica , Biologia Computacional , Esmalte Dentário , Proteínas do Esmalte Dentário/genética , População do Leste Asiático
3.
Sci Rep ; 14(1): 445, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172607

RESUMO

Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.


Assuntos
Amelogênese Imperfeita , Demência , Epilepsia , Anormalidades Dentárias , Humanos , Animais , Camundongos , Amelogênese Imperfeita/genética , Convulsões , Mutação , Proteínas de Membrana/genética , Proteínas Nucleares/genética
4.
J Pediatr Ophthalmol Strabismus ; 61(1): 59-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37092661

RESUMO

PURPOSE: To report two new cases with confirmed diagnosis of Heimler syndrome and describe their systemic and ophthalmic phenotype and visual rehabilitation. METHODS: Retrospective review of medical records. RESULTS: Both siblings were diagnosed as having sensori-neural hearing loss and retinal dystrophy with exuberant intraretinal cystoid spaces and cone-rod dysfunction. The older sibling also had amelogenesis imperfecta and neither had nail abnormalities. Genetic analysis identified homozygosity for the pathogenic variant c.2528G>A p.(Gly843Asp) in the PEX1 gene in both siblings. The parents were heterozygous carriers of the variant. CONCLUSIONS: The authors report a familial case of Heimler syndrome due to biallelic PEX1 pathogenic variants that manifested as macular dystrophy characterized by cone-rod dysfunction and complicated by intraretinal cystoid spaces. Review of the literature shows that ocular phenotype is variable in patients with Heimler syndrome. [J Pediatr Ophthalmol Strabismus. 2024;61(1):59-66.].


Assuntos
Amelogênese Imperfeita , Anormalidades do Olho , Perda Auditiva Neurossensorial , Unhas Malformadas , Humanos , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/complicações , Mutação , Irmãos , Unhas Malformadas/diagnóstico , Unhas Malformadas/genética , Unhas Malformadas/complicações , Fenótipo , Anormalidades do Olho/complicações , Linhagem , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Membrana/genética
5.
J Dent Res ; 103(1): 22-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058155

RESUMO

Amelogenesis imperfecta (AI) comprises a group of rare, inherited disorders with abnormal enamel formation. Ameloblastin (AMBN), the second most abundant enamel matrix protein (EMP), plays a critical role in amelogenesis. Pathogenic biallelic loss-of-function AMBN variants are known to cause recessive hypoplastic AI. A report of a family with dominant hypoplastic AI attributed to AMBN missense change p.Pro357Ser, together with data from animal models, suggests that the consequences of AMBN variants in human AI remain incompletely characterized. Here we describe 5 new pathogenic AMBN variants in 11 individuals with AI. These fall within 3 groups by phenotype. Group 1, consisting of 6 families biallelic for combinations of 4 different variants, have yellow hypoplastic AI with poor-quality enamel, consistent with previous reports. Group 2, with 2 families, appears monoallelic for a variant shared with group 1 and has hypomaturation AI of near-normal enamel volume with pitting. Group 3 includes 3 families, all monoallelic for a fifth variant, which are affected by white hypoplastic AI with a thin intact enamel layer. Three variants, c.209C>G; p.(Ser70*) (groups 1 and 2), c.295T>C; p.(Tyr99His) (group 1), and c.76G>A; p.(Ala26Thr) (group 3) were identified in multiple families. Long-read AMBN locus sequencing revealed these variants are on the same conserved haplotype, implying they originate from a common ancestor. Data presented therefore provide further support for possible dominant as well as recessive inheritance for AMBN-related AI and for multiple contrasting phenotypes. In conclusion, our findings suggest pathogenic AMBN variants have a more complex impact on human AI than previously reported.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Animais , Humanos , Amelogênese/genética , Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Linhagem , Fenótipo
6.
Clin Genet ; 105(3): 243-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37937686

RESUMO

Amelogenesis imperfecta (AI) represents a group of clinically and genetically heterogeneous disorders that affect enamel formation and mineralization. Although AI is commonly considered a monogenic disorder, digenic inheritance is rarely reported. In this study, we recruited two nonconsanguineous Chinese families exhibiting diverse phenotypes of enamel defects among affected family members. Digenic variants were discovered in both probands. In family 1, the proband inherited a paternal frameshift variant in LAMA3 (NM_198129.4:c.3712dup) and a maternal deletion encompassing the entire AMELX gene. This resulted in a combined hypoplastic and hypomineralized AI phenotype, which was distinct from the parents' manifestations. In family 2, whole-exome sequencing analysis revealed the proband carried a maternal heterozygous splicing variant in COL17A1 (NC_000010.11 (NM_000494.3): c.4156 + 2dup) and compound heterozygous variants in RELT (paternal: NM_032871.4:c.260A > T; maternal: NM_032871.4:c.521 T > G). These genetic changes caused the abundant irregular enamel defects observed in the proband, whereas other affected family members carrying heterozygous variants in both COL17A1 and RELT displayed only horizontal grooves as their phenotype. The pathogenicity of the novel COL17A1 splice site variant was confirmed through RT-PCR and minigene assay. This study enhances our understanding by highlighting the potential association between the co-occurrence of variants in two genes and variable phenotypes observed in AI patients.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Fenótipo , Mutação da Fase de Leitura/genética , Proteínas da Matriz Extracelular/genética , Variação Biológica da População , Linhagem
7.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650945

RESUMO

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Mutação , Proteínas do Esmalte Dentário/genética , Fósforo , Minerais , Carbono
8.
Orphanet J Rare Dis ; 18(1): 371, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037133

RESUMO

BACKGROUND: Short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis is a rare, autosomal recessive, skeletal disorder first described in 2018. This syndrome starts with pre- and postnatal developmental delay, and gradually presents with variable facial dysmorphisms, a short stature, amelogenesis imperfecta, and progressive skeletal dysplasia affecting the limbs, joints, hands, feet, and spine. CASE PRESENTATION: We identified a homozygous novel nonsense mutation in exon 1 of SLC10A7 (NM_001300842.2: c.100G > T / p.Gly34*) segregating with the typical disease phenotype in a Han Chinese family. We reviewed the 12-year surgical treatment history with seven interventions on spine. CONCLUSION: To date, only 12 cases of the SLC10A7 mutation have been reported, mainly from consanguineous families. Our patient showed a relatively severe and broad clinical phenotype compared with previously reported cases. In this patient, annual check-ups and timely surgeries led to a good outcome.


Assuntos
Amelogênese Imperfeita , Nanismo , Osteocondrodisplasias , Escoliose , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/cirurgia , Nanismo/genética , Nanismo/cirurgia , Homozigoto , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/cirurgia , Linhagem , Escoliose/genética , Escoliose/cirurgia
9.
BMC Med Genomics ; 16(1): 292, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974187

RESUMO

PURPOSE: This study reported the first case of Kohlschütter-Tönz syndrome (KTS) in China and reviewed the literature of the reported cases. METHODS: This patient was registered at the Children's Hospital of Chongqing Medical University. The patient's symptoms and treatments were recorded in detail, and the patient was monitored for six years. We employed a combination of the following search terms and Boolean operators in our search strategy: Kohlschütter-Tönz syndrome, KTS, and ROGDI. These terms were carefully selected to capture a broad range of relevant publications in PubMed, Web of Science, WHO Global Health Library, and China National Knowledge Infrastructure, including synonyms, variations, and specific terms related to KTS. The pathogenicity of the variants was predicted using SpliceAI and MutationTaster, and the structures of the ROGDI mutations were constructed using I-TASSER. RESULTS: This is the first case report of KTS in China. Our patient presented with epilepsy, global developmental delay, and amelogenesis imperfecta. A trio-WES revealed homozygous mutations in ROGDI (c.46-37_46-30del). The brain magnetic resonance imaging (MRI) and video electroencephalogram (VEEG) were normal. The efficacy of perampanel (PMP) in treating seizures and intellectual disability was apparent. Furthermore, 43 cases of ROGDI-related KTS were retrieved. 100% exhibited epilepsy, global developmental delay, and amelogenesis imperfecta. 17.2% received a diagnosis of attention deficit hyperactivity disorder (ADHD), and 3.4% were under suspicion of autism spectrum disorder (ASD). Language disorders were observed in all patients. Emotional disorders, notably self-harm behaviors (9.1%), were also reported. CONCLUSION: ROGDI-related KTS is a rare neurodegenerative disorder, characterized by three classic clinical manifestations: epilepsy, global developmental delay, and amelogenesis imperfecta. Moreover, patients could present comorbidities, including ADHD, ASD, emotional disorders, and language disorders. PMP may be a potential drug with relatively good efficacy, but long-term clinical trials are still needed.


Assuntos
Amelogênese Imperfeita , Transtorno do Espectro Autista , Epilepsia , Transtornos da Linguagem , Criança , Humanos , Amelogênese Imperfeita/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética
10.
BMC Oral Health ; 23(1): 893, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985977

RESUMO

BACKGROUND: Amelogenesis imperfecta (AI) is a developmental enamel defect affecting the structure of enamel, esthetic appearance, and the tooth masticatory function. Gene mutations are reported to be relevant to AI. However, the mechanism underlying AI caused by different mutations is still unclear. This study aimed to reveal the molecular pathogenesis in AI families with 2 novel pre-mRNA splicing mutations. METHODS: Two Chinese families with AI were recruited. Whole-exome sequencing and Sanger sequencing were performed to identify mutations in candidate genes. Minigene splicing assays were performed to analyze the mutation effects on mRNA splicing alteration. Furthermore, three-dimensional structures of mutant proteins were predicted by AlphaFold2 to evaluate the detrimental effect. RESULTS: The affected enamel in family 1 was thin, rough, and stained, which was diagnosed as hypoplastic-hypomature AI. Genomic analysis revealed a novel splicing mutation (NM_001142.2: c.570 + 1G > A) in the intron 6 of amelogenin (AMELX) gene in family 1, resulting in a partial intron 6 retention effect. The proband in family 2 exhibited a typical hypoplastic AI, and the splicing mutation (NM_031889.2: c.123 + 4 A > G) in the intron 4 of enamelin (ENAM) gene was observed in the proband and her father. This mutation led to exon 4 skipping. The predicted structures showed that there were obvious differences in the mutation proteins compared with wild type, leading to impaired function of mutant proteins. CONCLUSIONS: In this study, we identified two new splicing mutations in AMELX and ENAM genes, which cause hypoplastic-hypomature and hypoplastic AI, respectively. These results expand the spectrum of genes causing AI and broaden our understanding of molecular genetic pathology of enamel formation.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Feminino , Amelogenina/genética , Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Mutação/genética , Proteínas Mutantes/genética , Proteínas da Matriz Extracelular/genética
11.
Eur J Hum Genet ; 31(11): 1337-1341, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37670079

RESUMO

Amelogenesis imperfecta (AI) is a group of rare genetic conditions characterized by quantitative and/or qualitative tooth enamel alterations. AI can manifest as an isolated trait or as part of a syndrome. Recently, five biallelic disease-causing variants in the RELT gene were identified in 7 families with autosomal recessive amelogenesis imperfecta (ARAI). RELT encodes an orphan receptor in the tumor necrosis factor (TNFR) superfamily expressed during tooth development, with unknown function. Here, we report one Brazilian and two French families with ARAI and a distinctive hypomineralized phenotype with hypoplastic enamel, post-eruptive enamel loss, and occlusal attrition. Using Next Generation Sequencing (NGS), four novel RELT variants were identified (c.120+1G>A, p.(?); c.120+1G>T, p.(?); c.193T>C, p.(Cys65Arg) and c.1260_1263dup, p.(Arg422Glyfs*5)). Our findings extend the knowledge of ARAI dental phenotypes and expand the disease-causing variants spectrum of the RELT gene.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Receptores do Fator de Necrose Tumoral/genética , Fenótipo , Brasil , Linhagem
12.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 58(9): 933-937, 2023 Sep 09.
Artigo em Chinês | MEDLINE | ID: mdl-37659852

RESUMO

Objective: FAM83H is one of the major pathogenic genes of amelogenesis imperfecta (AI). Previous studies focused on the abnormal enamel development and mineralization caused by the mutations in FAM83H. Here we aimed to observe other effects of FAM83H mutations on tooth eruption besides AI through clinical case analysis. Methods: Published AI cases with FAM83H mutations were searched through PubMed database, and the characteristics of tooth eruption of each cases were counted and analyzed. The literature search range was from January 1, 2008 to February 28, 2023, using the keywords FAM83H and amelogenesis imperfecta. The included literature must provide the detailed radiographic imaging or dental eruption information of AI patients, as well as FAM83H gene mutation information. The basic clinical information, tooth phenotypes, and mutations of all the enrolled cases were collected and analyzed in order to find the characteristics of abnormal tooth eruption. Results: Among 45 papers about FAM83H related to AI, twenty meeting the inclusion criteria were selected, involving 50 AI patients carrying FAM83H mutations who had radiographic image data or the detailed description of tooth eruption. A total of 34 abnormal erupted teeth were from 12 patients (12/50, 24%), among which 85% (29/34) had clear eruption path without any eruption obstructions, either embedded (25/34, 74%) or partially erupted (4/34, 12%). Tooth position analysis found that abnormal eruption of canines and second molars accounted for the highest proportion, accounting for 38% (13/34) respectively. Conclusions: The mutations in FAM83H may lead to amelogenesis imperfecta as well as abnormal tooth eruption at specific tooth positions.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Erupção Dentária/genética , Proteínas/genética , Esmalte Dentário , Mutação
13.
Clin Oral Investig ; 27(10): 6111-6123, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615776

RESUMO

OBJECTIVES: The current research on single-nucleotide polymorphism (SNP) mutation sites at different positions of the FAM83H gene and their phenotypic changes leading to amelogenesis imperfecta (AI) is inconsistent. We identified a previously reported heterozygous nonsense mutation c.1192C>T (p.Q398*) in the FAM83H gene and conducted a comprehensive analysis of the dental ultrastructure and chemical composition changes induced by this mutation. Additionally, we predicted the protein feature affected by this mutation site. The aim was to further deepen our understanding of the diversity of AI caused by different mutation sites in the FAM83H gene. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the mutation sites. Physical features of the patient's teeth were investigated using various methods including cone beam computer tomography (CBCT), scanning electron microscopy (SEM), contact profilometry (roughness measurement), and a nanomechanical tester (nanoindentation measurement). The protein features of wild-type and mutant FAM83H were predicted using bioinformatics methods. RESULTS: One previously discovered FAM83H heterozygous nonsense mutation c.1192C>T (p.Q398*) was detected in the patient. SEM revealed inconsistent dentinal tubules, and EDS showed that calcium and phosphorus were lower in the patient's dentin but higher in the enamel compared to the control tooth. Roughness measurements showed that AI patients' teeth had rougher occlusal surfaces than those of the control tooth. Nanoindentation measurements showed that the enamel and dentin hardness values of the AI patients' teeth were both significantly reduced compared to those of the control tooth. Compared to the wild-type FAM83H protein, the mutant FAM83H protein shows alterations in stability, hydrophobicity, secondary structure, and tertiary structure. These changes could underlie functional differences and AI phenotype variations caused by this mutation site. CONCLUSIONS: This study expands the understanding of the effects of FAM83H mutations on tooth structure. CLINICAL RELEVANCE: Our study enhances our understanding of the genetic basis of AI and may contribute to improved diagnostics and personalized treatment strategies for patients with FAM83H-related AI.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Códon sem Sentido/genética , Códon sem Sentido/análise , Esmalte Dentário/química , Proteínas/análise , Proteínas/genética , Mutação
14.
J Dent Res ; 102(11): 1210-1219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563801

RESUMO

Amelogenin plays a crucial role in tooth enamel formation, and mutations on X-chromosomal amelogenin cause X-linked amelogenesis imperfecta (AI). Amelogenin pre-messenger RNA (mRNA) is highly alternatively spliced, and during alternative splicing, exon4 is mostly skipped, leading to the formation of a microRNA (miR-exon4) that has been suggested to function in enamel and bone formation. While delivering the functional variation of amelogenin proteins, alternative splicing of exon4 is the decisive first step to producing miR-exon4. However, the factors that regulate the splicing of exon4 are not well understood. This study aimed to investigate the association between known mutations in exon4 and exon5 of X chromosome amelogenin that causes X-linked AI, the splicing of exon4, and miR-exon4 formation. Our results showed mutations in exon4 and exon5 of the amelogenin gene, including c.120T>C, c.152C>T, c.155C>G, and c.155delC, significantly affected the splicing of exon4 and subsequent miR-exon4 production. Using an amelogenin minigene transfected in HEK-293 cells, we observed increased inclusion of exon4 in amelogenin mRNA and reduced miR-exon4 production with these mutations. In silico analysis predicted that Ser/Arg-rich RNA splicing factor (SRSF) 2 and SRSF5 were the regulatory factors for exon4 and exon5 splicing, respectively. Electrophoretic mobility shift assay confirmed that SRSF2 binds to exon4 and SRSF5 binds to exon5, and mutations in each exon can alter SRSF binding. Transfection of the amelogenin minigene to LS8 ameloblastic cells suppressed expression of the known miR-exon4 direct targets, Nfia and Prkch, related to multiple pathways. Given the mutations on the minigene, the expression of Prkch has been significantly upregulated with c.155C>G and c.155delC mutations. Together, we confirmed that exon4 splicing is critical for miR-exon4 production, and mutations causing X-linked AI in exon4 and exon5 significantly affect exon4 splicing and following miR-exon4 production. The change in miR-exon4 would be an additional etiology of enamel defects seen in some X-linked AI.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , MicroRNAs , Humanos , Amelogenina/genética , Amelogenina/metabolismo , Amelogênese Imperfeita/genética , Células HEK293 , Mutação/genética , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , MicroRNAs/genética , RNA Mensageiro
15.
Harefuah ; 162(6): 352-358, 2023 Jun.
Artigo em Hebraico | MEDLINE | ID: mdl-37394436

RESUMO

BACKGROUND: Short stature is a common finding among the general population, mostly presented as an isolated phenotype. The syndromic short statute is rare and complex. Recently, we examined several patients from related families sharing both short stature and congenital dental abnormalities. OBJECTIVES: 1. Clinical characterization of syndromic short stature; 2. To find the disease mutation and evaluate the carrier state in the particular community. METHODS: Clinical characterization- by medical history, medical records and physical examination; Homozygosity mapping - by using the Single nucleotide polymorphism (SNP) chromosomal microarrays (CMA) analysis and gene mutation detection by ABI Sanger sequence. RESULTS: All patients present with short stature severe dental anomalies including enamel formation and mineralization defect, oligodontia, abnormal shape and retarded eruption. CMA analysis in 3 patients and 2 healthy members of four families was normal. One homozygote region in chromosome 11 (11p11.2- 11q13.3) was found in all patients. By using the candidate gene approach, amongst the 301 genes found within this region, only one, the LTBP3 gene (Latent Transforming Growth Factor-Beta-Binding Protein-3) has high priority for sequence. Hence, LTBP3 (OMIM-602090) pathogenic variant is responsible for "brachyolmia with amelogenesis imperfecta" also known as "Dental Anomalies and Short Stature (DASS)" (OMIM- 601216). We sequenced all 29 LTBP3 exons and a novel splice pathogenic variant, c.1346-1G>A chr11:65319629, in exon 8 was identified. The variant segregated well within healthy tested family members. We found a high carrier rate in the village (1:15). CONCLUSIONS: We identified a novel and common LTBP3 gene pathogenic variant responsible for short stature, brachyolmia and amelogenesis imperfecta in Druze Arab patients.


Assuntos
Amelogênese Imperfeita , Osteocondrodisplasias , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Árabes , Mutação , Osteocondrodisplasias/genética , Proteínas de Ligação a TGF-beta Latente/genética
16.
Int Orthod ; 21(4): 100789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37494776

RESUMO

INTRODUCTION: The aim of this systematic review (Prospero CRD42022323188) is to investigate whether an association exists in patients with amelogenesis imperfecta (AI) between occlusal characteristics and genotype on the one hand and enamel structural phenotype on the other. MATERIAL AND METHODS: Reports up to May 2023 assessing occlusion of individuals with AI were browsed in a systematic search using Medline, Embase, ISI Web of Science, and the grey literature. Randomised control trials, case control studies, and case series specifying both occlusion, assessed by cephalometric or clinical analysis, and genotype or dental phenotype in patients with AI were included without any age limitation. Two authors independently selected the publications and extracted the data in accordance with the PRISMA statement. The risk of bias was assessed with the Critical Appraisal Checklists from the Johanna Briggs Institute. RESULTS: Twenty-five articles were chosen from the 261 results. Most of the included publications were case series (n=22) and case control studies (n=3). Thirteen studies reported both a genotype (ENAM, FAM83H, FAM20A, DLX3, CNMM4, WDR72) and occlusal diagnostic. The methodological quality of the studies was moderate. All AI phenotypes showed an open bite (OB) rate around 35%, except mixed form. The other malocclusions were not often mentioned. No correlation between occlusal phenotype and genotype or AI phenotype could be identified in patients with AI, as most studies had short occlusal descriptions and small sample sizes. CONCLUSION: OB malocclusions were more frequently reported in AI. This review highlighted the need for a more accurate description of orofacial features associated with AI, to better clarify the role of amelogenesis genes in the regulation of craniofacial morphogenesis and identify patients requiring orthognathic surgery at an early stage.


Assuntos
Amelogênese Imperfeita , Má Oclusão , Mordida Aberta , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/diagnóstico , Genótipo , Fenótipo , Esmalte Dentário , Má Oclusão/complicações , Proteínas/genética
17.
Oral Dis ; 29(6): 2334-2365, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154292

RESUMO

Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.


Assuntos
Amelogênese Imperfeita , Hipoplasia do Esmalte Dentário , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Fenótipo
18.
Int Endod J ; 56(8): 943-954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37159186

RESUMO

AIM: Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY: Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS: Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS: Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.


Assuntos
Amelogênese Imperfeita , Calcinose , Proteínas do Esmalte Dentário , Nefrocalcinose , Humanos , Nefrocalcinose/genética , Nefrocalcinose/patologia , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Polpa Dentária/metabolismo , Proteínas do Esmalte Dentário/genética , Mutação , Perfilação da Expressão Gênica , Proteínas de Transporte/genética
19.
J Dent Res ; 102(9): 1047-1057, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249312

RESUMO

Tooth enamel is generated by ameloblasts. Any failure in amelogenesis results in defects in the enamel, a condition known as amelogenesis imperfecta. Here, we report that mice with deficient autophagy in epithelial-derived tissues (K14-Cre;Atg7F/F and K14-Cre;Atg3F/F conditional knockout mice) exhibit amelogenesis imperfecta. Micro-computed tomography imaging confirmed that enamel density and thickness were significantly reduced in the teeth of these mice. At the molecular level, ameloblast differentiation was compromised through ectopic accumulation and activation of NRF2, a specific substrate of autophagy. Through bioinformatic analyses, we identified Bcl11b, Dlx3, Klk4, Ltbp3, Nectin1, and Pax9 as candidate genes related to amelogenesis imperfecta and the NRF2-mediated pathway. To investigate the effects of the ectopic NRF2 pathway activation caused by the autophagy deficiency, we analyzed target gene expression and NRF2 binding to the promoter region of candidate target genes and found suppressed gene expression of Bcl11b, Dlx3, Klk4, and Nectin1 but not of Ltbp3 and Pax9. Taken together, our findings indicate that autophagy plays a crucial role in ameloblast differentiation and that its failure results in amelogenesis imperfecta through ectopic NRF2 activation.


Assuntos
Ameloblastos , Amelogênese Imperfeita , Camundongos , Animais , Ameloblastos/metabolismo , Amelogênese Imperfeita/genética , Microtomografia por Raio-X , Fator 2 Relacionado a NF-E2/metabolismo , Amelogênese/genética , Camundongos Knockout , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/metabolismo
20.
Bone ; 166: 116595, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272714

RESUMO

Truncation mutations in family with sequence similarity, member H (FAM83H) gene are considered the main cause of autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI); however, its pathogenic mechanism in amelogenesis remains poorly characterized. This study aimed to investigate the effects of truncated FAM83H on developmental defects in enamel. CRISPR/Cas9 technology was used to develop a novel Fam83h c.1186C > T (p.Q396*) knock-in mouse strain, homologous to the human FAM83H c.1192C > T mutation in ADHCAI. The Fam83hQ396⁎/Q396⁎ mice showed poor growth, a sparse and scruffy coat, scaly skin and early mortality compared to control mice. Moreover, the forelimbs of homozygous mice were swollen, exhibiting a significant inflammatory response. Incisors of Fam83hQ396⁎/Q396⁎ mice appeared chalky white, shorter, and less sharp than those of control mice, and energy dispersive X-ray spectroscopy (EDS) analysis and Prussian blue staining helped identify decreased iron and increased calcium (Ca) and phosphorus (P) levels, with an unchanged Ca/P ratio. The expression of iron transportation proteins, transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), was decreased in Fam83h-mutated ameloblasts. Micro-computed tomography revealed enamel defects in Fam83hQ396⁎/Q396⁎ mice. Fam83hQ396⁎/Q396⁎ enamel showed decreased Vickers hardness and distorted enamel rod structure and ameloblast arrangement. mRNA sequencing showed that the cell adhesion pathway was most notably clustered in LS8-Fam83h-mutated cells. Immunofluorescence analysis further revealed decreased protein expression of desmoglein 3, a component of desmosomes, in Fam83h-mutated ameloblasts. The FAM83H-casein kinase 1α (CK1α)-keratin 14 (K14)-amelogenin (AMELX) interaction was detected in ameloblasts. And K14 and AMELX were disintegrated from the tetramer in Fam83h-mutated ameloblasts in vitro and in vivo. In secretory stage ameloblasts of Fam83hQ396⁎/Q396⁎ mice, AMELX secretion exhibited obvious retention in the cytoplasm. In conclusion, truncated FAM83H exerted dominant-negative effects on gross development, amelogenesis, and enamel biomineralization by disturbing iron transportation, influencing the transportation and secretion of AMELX, and interfering with cell-cell adhesion in ameloblasts.


Assuntos
Amelogênese Imperfeita , Proteínas , Animais , Masculino , Camundongos , Ameloblastos/metabolismo , Amelogênese/genética , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Ferro/metabolismo , Mutação , Proteínas/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...